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Abstract. An extended BRST symmetry allows to obtain many non-minimal terms, which
are very useful in the gauge-fixing procedure of the extended Hamiltonian. By structuring the
generators on many levels, we construct the phase space for the implementation of a fourth-
order symmetry. The corresponding extended Hamiltonian, containing all possible non-minimal
terms, is presented for the case of Yang–Mills fields and the results obtained by this extension
compared to those issued from standard BRST theory.

1. Introduction

One of the most powerful methods for the quantization of Yang–Mills theories consists of
the extension of the phase space by using ghost-type fields, which are variables without
any physical significance that do not appear in the asymptotical states. This procedure
of quantization was used for the first time by ’t Hooft [1] in order to overcome the
inconsistencies of the Fadeev–Popov scheme. As a result of this enlargement of the phase
space, it was noticed, for the Yang–Mills field [2] as well as for other gauge theories [3],
that a global symmetry appears that incorporates the original local symmetry. The existence
of this global symmetry offers the ideal frame for the quantization of the gauge theories
and gives rise to the BRST quantization procedure.

The Hamiltonian approach of this procedure, which will be used in the present paper,
was developed by Batalin, Fradkin and Vilkovisky [4, 5]. A pedagogical exposure of this
approach and the analysis of the Yang–Mills field in this context has been offered in [6].

A few years later, Batalinet al [7, 8] proposed a new Hamiltonian formalism that
joined the BRST and the anti-BRST symmetries in an sp(2) doublet. A cohomological
interpretation of the BRST–anti-BRST theory has been given by Gregoire and Henneaux
[9, 10]. Their construction is based on the idea of the duplication of constraints and of all
generators of the extended phase space.

However, it was clear that the generators of the sp(2) symmetry exhaust only partially
the structure of the non-minimal sector, many other possibilities remaining valid. A larger
symmetry could offer many non-minimal terms, but, at the same time, could increase the
difficulty of the ghost structure control. The necessity of ordering these variables therefore
arises. Using the idea of multiplying the ghost variables and of spreading them out on many
levels, the extension of the sp(2) BRST symmetry towards a sp(3) one has been achieved
in [11, 12].

We intend now to take one more step on the way to a generalized structure of extended
phase space in the BRST quantization and to analyse the possibility of defining a fourth-
order symmetry. We have in view two main goals: to determine the possible non-minimal
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terms that could appear in this case in the extended Hamiltonian; and to verify the validity
of this theory, by applying it to the case of Yang–Mills theory. The paper is organized as
follows. In section 2 we present the structure of the extended phase space in the frame of the
sp(4) BRST quantization and point out the form of the BRST charges and of the extended
Hamiltonian for a first-rank theory. In section 3 we effectively write these quantities for
Yang–Mills field. The comparison of our results to those issued from the quantization of
the same theory in the context of a less-extended BRST symmetry is presented in section 4.
Some conclusive remarks end the paper.

2. The fourth-order BRST symmetry

Let us consider a dynamical system that in the phase spaceM0 = {qi, pi; i = 1, n}
is described by the HamiltonianH0(q, p) and by the independent first-class constraints
{Gα(q, p) = 0, α = 1, m}. The first-class condition implies the relations

[Gα,Gβ ] = CγαβGγ [H0,Gα] = V βα Gβ. (1)

The Poisson brackets are defined as

[qi, pj ] = δij . (2)

The structure functionsCγαβ andV βα either depend on the canonical variables{qi, pi} or are
constant, as for the case of Yang–Mills theory.

Because of the constraints, not all the coordinates ofM0 are independent and, therefore,
canonical quantization is not possible in this space. The BRST method employs an extended
phase spaceM that is obtained by adding some ghost variables to the real ones. In this
extended space the theory is invariant in relation to a global symmetry, an invariance which
could be expressed either through the differential operatorsT or through the BRST charge
�T . For an observableA one has

sT A ≡ [A,�T ] = 0. (3)

The nilpotency ofsT asks for the validity of the master equation:

[�T ,�T ] = 0. (4)

In the last two relations the Poisson brackets must be defined on the whole extended phase
spaceM. The ghost spectrum which generates this space depends on the symmetry required.
In this paper we are interested in a BRST symmetry that can be expressed as the sum of
four anticommuting differentials (the BRST symmetry of fourth order):

sT =
4∑
a=1

sa sasb + sbsa = 0 a, b = 1, 4. (5)

As in the standard BRST construction, the extended phase space can be split in the
ghost momenta complexendowed with the Koszul differential and inthe ghosts’ complex
on which the longitudinal derivative acts. Both of the two complexes are graduated using
the following grades [11]:

• the ghost number(gh) is strictly positive for ghosts and negative for ghost momenta;
• the level number(lev) is a positive integer for ghosts and negative for ghost momenta;
• the resolution degree(res) is vanishing for ghosts and with value opposite to gh for
momenta.
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Using these graduations, each variable can be written in the form

Aα ≡
(gh,lev)
Aα . (6)

Each differentialsa is constructed by the Koszul differentialδa and by the longitudinal
derivativeda:

sa = δa + da + · · · .
Because of (5), we look for a Koszul differential of the form

δT =
4∑
a=1

δa; δaδb + δbδa = 0 a, b = 1, 4. (7)

Let us now find the minimal structure of the extended phase space for the case of
a fourth-order BRST symmetry. We start with the construction of the Koszul complex,
generated by the ghost momenta. In the standard manner, we first introduce thePα-momenta:

Gα = 0⇒ (∃){Pαa; δaPαb = δabGα;α = 1, m; a, b = 1, 4}. (8)

In order to find the non-trivial cycles that containPαa, we multiply the relation (8),without
summation, by the fourth-order total anti-symmetric tensor. Because of theδab symmetry
we have

δa(εabcdPαb) = 0 ε1234= 1 a, b, c, d = 1, 4. (9)

The relations (9) ask for new generators. Let us now introduce theπ -momentaof
second order:

{παab; a 6= b; δaπαbc = εabcdPαd; a, b, c, d = 1, 4}. (10)

New non-trivial cocycles are generated by (10). We obtain their expressions by
multiplying (10) with δac, again without summation. We have

δaπαab = 0 (11)

and we might add new generators to the ghost-momenta complex. Let us consider the set
of first-orderπ -momenta:

{παa; δaπαb = παab; a, b = 1, 4}. (12)

The construction of the Koszul complex is achieved by considering a final set of
generators: theπ -momenta of order zero:

{πα; δaπα = παa; a = 1, 4}. (13)

In conclusion, the Koszul complex suitable for the implementation of fourth-order BRST
symmetry is generated by the following set of generators:

PA ≡ {pi, Pαa, παab, παa, πα; i = 1, n;α = 1, m; a, b = 1, 4}. (14)

Remark 1. The graduation of the variables (14) is given by:
• the ghost numbers and the resolution degrees:

gh(pi) = −res(pi) = 0 gh(Pαa) = −res(Pαa) = −1

gh(παab) = −res(παab) = −2 gh(παa) = −res(παa) = −3

gh(πα) = −res(πα) = −4

• the level numbers:

lev(pi) = 0 lev(Pαa) = a − 1 lev(παab) = a + b − 8

lev(παa) = a − 7 lev(πα) = −6.
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Remark 2. One can see that there are two different second-orderπ -momenta, namelyπα14

andπα23, with the same level number:

lev(πα14) = lev(πα23) = −3.

This fact can be explained by the requirement (7) imposed forδ-operators. If we project
on different values of the level-number the relation

δ2
T = (δ1+ δ2+ δ3+ δ4)

2 = 0

we obtain that, on theL(−3)-level, the following relation might be fulfilled:

(δ1δ4+ δ4δ1)+ (δ2δ3+ δ3δ2) = 0. (15)

The requirement (7) is stronger than (15) and we need two different sets of generators to
ensure that each bracket vanishes separately.

Remark 3. The canonical structure of the extended phase space is accomplished by defining
the ghost sector. It is generated by the variables

QA ≡ {qi,Qαa, λαab, λαa, λα; i = 1, n;α = 1, m; a, b = 1, 4}. (16)

We now pass to the problem of finding the BRST charges,�a, and the extended
Hamiltonian. For this, we solve the following equations:

[�a,�b] = 0 a, b = 1, 4 (17)

[H,�a] = 0 a = 1, 4. (18)

The charges�a are decomposed in the form

�a =
∑
r>0

(r)

�a res(
(r)

�a) = r (19)

and satisfy the boundary conditions

(0)
�a= GαδabQ

αb
(1)
�a= −εabcdPαbλαcd + · · ·

(2)
�a= παabλαb + · · ·

(3)
�a= −παaλα + · · · . (20)

For the Hamiltonian we write

H =
∑
r>0

(r)

H res(
(r)

H) = r
(0)
H≡ Hc(q, p). (21)

As we have already mentioned, Yang–Mills theory is a first-rank theory. One can check
that the form of the Hamiltonian (21) is a generalization of the sp(3) case given in [11]:

H = Hc + V βα [PβaQ
αa + πβabλαab + πβaλαa + πβλα]. (22)

Relation (22) gives all non-minimal terms that, for the sp(4) case, could be expected. In
the next section we shall identify some of these terms with the non-minimal terms usually
encountered in the standard BRST quantization of the Yang–Mills fields.
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3. An example of Yang–Mills theory

When Yang–Mills theory is defined on a group with non-vanishing structure functions, we
have the case of a non-Abelian model. We consider the case of ad-dimensional group, for
which the Hamiltonian is given by the relation

H0(x) = 1
2F

u
ijF

ij
u − 1

2piup
iu i, j = 1, 2, 3, u = 1, . . . , d. (23)

The constraints of this model are

Gα ≡ {Gu ≡
(2)
8u,Gd+u ≡

(1)
8u; u = 1, . . . , d} α = 1, . . . ,2d. (24)

where

(2)
8u (x) ≡ −∂i piu + f tuvAivpit = 0

(1)
8u (x) ≡ pou = 0. (25)

For the system characterized by constraints (25), the density of the canonical
Hamiltonian has the form

Hc = H0+ A0u· (2)8u . (26)

Using notation (24), the constraints can be joined in the 2d × 2d matrix

Wαβ = ([Gα,Gβ ]) =
(
f tuvGt 0

0 0

)
.

We can also write

[Hc,Gα] =
{
A0uf vuαGv α 6 d
δu+dα Gu α > d.

From (1) we obtain the identifications

C
γ

αβ ≡
{

0 α or β or γ > d

f
γ

αβ α, β, γ 6 d (27)

V βα ≡
(
A0uf tuv 0
δvu 0

)
. (28)

Let us decompose the generators of the sp(4) extended phase space as

Pαa ≡ {
(2)
Pua,

(1)
Pua} παab ≡ { (2)πuab,

(1)
πuab} παa ≡ { (2)πua, (1)πua} πα ≡ { (2)πu, (1)πu}

Qαa ≡ {
(2)
Qua,

(1)
Qua} λαab ≡ {

(2)

λuab,

(1)

λuab} λαa ≡ {
(2)
λua,

(1)
λua} λα ≡ {

(2)
λu,

(1)
λu}.

With (27) and (28), the sp(4) BRST Hamiltonian of the Yang–Mills fields comes to

H = Hc+
(2)
Pta (A

0uf tuv

(2)
Qva +

(1)

Qta)+ (2)
πtab (A

0uf tuv

(2)

λvab +
(1)

λtab)

+ (2)
πta (A

0uf tuv

(2)
λva +

(1)

λta)+ (2)
πt (A

0uf tuv

(2)
λv +

(1)

λt ). (29)
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4. Comparison to the standard approach

Let us compare the sp(4) Yang–Mills Hamiltonian (29) to that given by standard BRST
theory.

We note that, in standard BRST theory, the quantization of an irreducible system is
achieved in a phase space [13]:

M ≡ {Aµu, pµu,Qα, Pα}.

Using the notationQα ≡ {
(2)
Qu,

(1)
Qu} andPα ≡ {

(2)
Pu,

(1)
Pu}, the BRST-invariant Hamiltonian

can be written in this case as

H = Hc+
(2)
Pu (A

0t f utv

(2)
Qv +

(1)
Qu) . (30)

The minimal BRST charge for Yang–Mills theory has the standard form

�min = GαQ
α + 1

2f
t
uv

(2)
Pt

(2)
Qv

(2)
Qu .

If we observe (27) and (28), the previous relations become

H = Hc + V βα PβQα (31)

�min = GαQ
α + 1

2C
γ

αβPγQ
αQβ. (32)

In the standard procedure, one adds to the spaceM a non-minimal sectorgenerated by the
pairs{Eα, PEα} and{Fα, PFα}. It allows one to give to the Hamiltonian (31) the form

H ′ ≡ H + [K,�].

An adequate choice of the fermionK(E,F, PE, PF ) offers a gauge-fixed HamiltonianH ′.
The whole BRST charge can be written as [13]

� = �min+�non-min

= GαQ
α + 1

2C
γ

αβPγQ
αQβ + PEαFα. (33)

Let us accommodate the previous expressions to the notation used in section 3 for
non-Abelian Yang–Mills theory. We identify

Qα ≡ Qα1 Pα ≡ Pα1

Eα ≡ Qα2 PEα ≡ Pα2

Fα ≡ λα34 PFα ≡ πα34. (34)

By simply looking at relations (31) and (33) we can conclude the following.
• The minimal part of the standard BRST charge and the extended Hamiltonian have

the form

�min = GαQ
α1+ 1

2C
γ

αβPγ1Q
α1Qβ1 (35)

H = Hc + V βα Pβ1Q
α1. (36)

They contain terms from the ‘ground’ level,L(0), only and can be interpreted as the first-
order approximation of some ‘generalized’ quantities that can be constructed using the whole
ghost spectrum.
• The non-minimal term that appears in (33) is

�non-min= Pα2λ
α34. (37)

It is constructed with variables from theL(−1) andL(1) levels. It is clear that this represents
only one of the possible ‘non-minimal terms’.
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• In the sp(4) theory, the last terms from the right-hand side of equations (35) and (36)
can be put in the most complete forms:

1
2C

γ

αβPγaQ
αaQβ1 a = 1, 4

and, respectively,

V βα PβaQ
αa a = 1, 4.

• Besides the previous terms, the extended Hamiltonian (22) and the corresponding
BRST generators contain many other non-minimal terms. The sp(4) theory brings up
terms that do not appear in the standard approach. Some of them describe the high-order
interactions between the ghost variables.

5. Conclusions

This paper presents the sp(4) BRST construction for a particular class of gauge theories. The
aim of the paper was to clarify the way in which the implementation of a larger symmetry
could influence the structure of the phase space and to explain what non-minimal terms
could appear in the Hamiltonian. With our rules, one can keep control of these terms and
choose the most adequate ghost structure. The analysis of the standard BRST charge and
the Hamiltonian for the Yang–Mills theories shows that the sp(2) construction, with the non-
minimal terms offered by it, is enough to obtain a coherent quantization. More sophisticated
theories ask for a larger ghost spectrum, a spectrum that could be given by a larger symmetry.
So, the conclusions we drove at are as follows: (i) building a generalized BRST symmetry
appears as a possibility, the standard and the sp(2) theories proving themselves as the first
two stages of this global theory; (ii) by itself, a more extended symmetry asks for a larger
ghost spectrum and, so, more non-minimal terms could be employed in the gauge-fixing
procedure. The level structure of the variables offers simple rules for constructing these
terms.
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